

黑龙江省地方计量技术规范

JJF(黑) XX—2025

医用洗板机校准规范

Calibration Specification for Medical Microplate Washers

(审定稿)

2025-XX-XX 发布

2025-XX-XX 实施

黑龙江省市场监督管理局 发布

医用洗板机校准规范

Calibration Specification for Medical Microplate Washers JJF(黑)XX—2025

归口单位:黑龙江省市场监督管理局

主要起草单位:哈尔滨市计量检定测试院

齐齐哈尔市检验检测中心

本规范主要起草人:

杨 瑾(哈尔滨市计量检定测试院)

关 雪(哈尔滨市计量检定测试院)

张 宇(齐齐哈尔市检验检测中心)

赵志强(哈尔滨市计量检定测试院)

姜文君(哈尔滨市计量检定测试院)

杨 迪(哈尔滨市计量检定测试院)

刘旭龙(哈尔滨市计量检定测试院)

参加起草人:

杜昕洋(哈尔滨市计量检定测试院)

目 录

引	言		(II)
1	范围		(1)
2	引用	文件	(1)
3	术语		(1)
4	概述		(1)
5	计量	特性	(1)
5.1	平力	均残液量	(1)
5.2	加材	羊误差	(1)
6	校准	条件	(2)
6.1	环境	竟条件	(2)
6.2	测量	量标准及其他设备	(2)
7	校准	项目和校准方法	(2)
7.1	外	观检查	(2)
7.2	校社	性前准备	(2)
7.3	平	均残液量	(2)
7.4	加机	羊误差	(3)
8	校准	结果表达	(3)
9	复校	时间间隔	(4)
附表	录 A	医用洗板机校准记录格式(推荐性)	(5)
附表	录 B	医用洗板机校准证书内页格式(推荐性)	(6)
附表	录 C	医用洗板机平均残液量测量结果不确定度评定示例	(7)
附表	录 D	(0~40) ℃纯水密度表(不含空气)	(11)

引言

JJF 1071—2010《国家计量校准规范编写规则》、JJF 1001—2011《通用计量术语及定义》、JJF 1059.1—2012《测量不确定度评定与表示》共同构成支撑本规范制定工作的基础性系列规范。

本规范主要参考了 YY/T 1529—2024《酶联免疫分析仪》的相关内容。 本规范为首次发布。

医用洗板机校准规范

1 范围

本规范适用于医用洗板机的校准。

2 引用文件

本规范引用了下列文件:

YY/T 1529-2024 酶联免疫分析仪

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。

3 术语

下列术语和定义适用于本规范。

平均残液量 average residual volume

酶标板清洗后各孔残留液体的平均体积。

4 概述

医用洗板机是用于清洗酶标板微孔残留物的仪器。医用洗板机利用压力泵正负压将 清洗液定量注入酶标板微孔内对其进行清洗,再将酶标板微孔内的清洗液吸入废液瓶内, 通过设定的重复清洗过程使酶标板微孔达到清洁的目的。一般由控制电路、压力泵系统、 电磁阀控制部分、试剂瓶、液晶显示器等部件组成。

5 计量特性

5.1 平均残液量

平均残液量≤2 μL/孔。

5.2 加样误差

加样量 10<V≤50, 加样误差不超过±10%,

加样量 V>50,加样误差不超过+5%。

注:校准工作不判定符合与否,上述计量特性的指标仅供参考。

6 校准条件

- 6.1 环境条件
- 6.1.1 环境温度: (10~40)℃。
- 6.1.2 相对湿度: (30~80)%。
- 6.2 测量标准及其他设备
- 6.2.1 测量标准
- 6.2.1.1 电子天平: ①级, 测量范围(0~220)g, 实际分度值不大于 0.01 mg;
- 6.2.1.2 温度计:测量范围 (0~50) ℃,分度值 1℃。
- 6.2.2 其他设备

校准介质: 纯水,应符合 GB/T 6682—2008《分析实验用水规格和试验方法》要求的蒸馏水或去离子水。

注: 也可以采用其他满足技术要求的测量设备。

7 校准项目和校准方法

7.1 外观检查

洗板机外壳不应有影响正常工作的机械损伤,显示屏、按键、各调节旋钮、紧固件、 开关等部件工作正常,洗液瓶、废液瓶及连接管无裂纹、压扁、老化等现象。

7.2 校准前准备

洗板机置于水平工作台上,将洗液瓶、废液瓶和管路正确连接;纯水置于恒温恒湿实验室中平衡 2h;检查所有针头高度一致,排列整齐,无堵塞。

7.3 平均残液量

用电子天平称量酶标板的初始质量。设定洗涤程序为全板洗涤,使用纯水作为清洗液,清洗液的加注体积设为仪器允许的最大值,无浸泡时间,重复清洗3次。洗板程序结束后,立即将酶标板取出,称量洗板后的酶标板质量。按照公式(1)计算酶标板上每孔的平均残液量。

$$V = \frac{m - m_0}{n \times \rho_w} \tag{1}$$

式中:

V —— 平均残液量, μL;

m —— 清洗后酶标板的质量, mg;

 m_0 — 酶标板的初始质量, mg;

 $ρ_w$ — 纯水密度(见附录 D),mg/μL;

n —— 酶标板孔数。

7.4 加样误差

准备适当的容器(可以防止容器内的水分挥发),放在电子天平上调零,将容器放到合适位置,控制加液针往该容器中加入规定量纯水,在电子天平上称其质量。实际加入量等于加入纯水的质量除以当时温度下纯水的密度,不同温度下纯水的密度见附录 D,按公式(2)计算加样误差。

$$\delta = \frac{V_0 - V_{\rm m}}{V_{\rm m}} \times 100\% \tag{2}$$

式中:

 δ — 加样误差, μ L;

*V*₀—— 规定加入量, μL;

 $V_{\rm m}$ —— 实际加入量, μ L;

8 校准结果表达

8.1 校准记录

校准记录推荐格式参见附录 A

8.2 校准结果的处理

校准证书由封面和校准数据组成。校准证书内页格式参见附录 B。校准证书至少包括以下内容:

- a) 标题, 如"校准证书":
- b) 实验室名称和地址:
- c)进行校准的地点(如果不在实验室内校准);
- d) 证书的唯一性标识(如编号),每页及总页数的标识:
- e) 客户的名称和地址;
- f)被校仪器的描述和明确标识(如型号、产品编号等);
- g) 进行校准的日期;

- h) 校准所依据的技术规范的标识,包括名称和代号;
- i) 校准所用测量标准的溯源性及有效性说明;
- j) 校准环境的描述;
- k) 校准结果及其测量不确定度说明;
- 1) 校准员及核验员的签名;
- m)校准证书批准人的签名、职务或等效说明;
- n) 校准结果仅对被校对象有效的声明;
- o) 未经实验室书面批准, 不得部分复制证书的声明;
- p) 对校准规范的偏离的说明。

9 复校时间间隔

复校时间间隔建议为12个月。

由于复校时间间隔的长短是由仪器的使用情况、使用者、仪器本身质量等诸因素所决定的,因此送校单位可根据实际使用情况自主决定复校时间间隔。

附录 A

医用洗板机校准记录格式 (推荐性)

委托单位	记录编号	
仪器名称	温度	
型号规格	相对湿度	
出厂编号	校准依据	
制造厂	校准地点	
校准人员	校准日期	
核验人员	备注	

校准使用的计量标准器具

刑具/知枚	测导范围	不确定度/准确度等	证书编号					
全与/ 观俗 	侧里池团 	级/最大允许误差	及有效期					
	型号/规格	型号/规格 测量范围	型号/拟格 测量消围					

校准结果

1	外观:	纯水温度:	℃
1	21.77g;		

2 平均残液量

酶标板初始质量 g			纯水密度 mg/μL	平均残液量 μL
고 나다 >> 트 / 메 트 /				
平均残液量测量结	吉果的扩展不确定度			

3 加样误差

规定加入量	加入纯水质量	纯水密度	实际加入量	加样误差
μL	mg	mg/μL	μL	%

附录 B

医用洗板机校准证书内页格式 (推荐性)

校准结果

1 外观	
71796	
2 平均残液量/μL	
加样误差/%	

平均残液量测量结果的扩展不确定度:

以下空白

附录 C

医用洗板机平均残液量测量结果的不确定度评定示例

- C.1 概述
- C.1.1 被校仪器: 医用洗板机。
- C.1.2 测量标准:

电子天平:准确度等级:①级,测量范围($0\sim230$)g,实际分度值 0.01mg。普通玻璃液体温度计:测量范围($-30\sim50$) \mathbb{C} ,分度值 $1\mathbb{C}$ 。

- C.1.3 环境条件:环境温度 20.0℃;相对湿度 55%。
- C.1.4 测量方法: 依据本规范中的规定。
- C.2 测量模型

$$V = \frac{m_{\rm i} - m_0}{n \times \rho_{\rm w}} = \frac{\Delta m}{n \times \rho_{\rm w}} \tag{C.1}$$

式中:

V —— 平均残液量, 山;

∧m —— 清洗后酶标板残液质量;

 m_1 —— 清洗后酶标板的质量, mg;

 m_0 —— 酶标板的初始质量, mg;

 $ρ_w$ — 纯水密度, mg/ μ L;

n — 酶标板孔数(本数学模型选用 96 孔酶标板)。

C.3 方差和灵敏系数

依据测量模型,各输入量独立不相关,方差为:

$$u_c^2(V) = c_1^2 u^2(\Delta m) + c_2^2 u^2(\rho_w)$$
 (C.2)

灵敏系数为:

$$c_1 = \frac{\partial V}{\partial \Delta m} = \frac{1}{96\rho_w} \qquad c_2 = \frac{\partial V}{\partial \rho_w} = -\frac{\Delta m}{96\rho_w^2}$$
 (C.3)

C.4 标准不确定度分量评定

C.4.1 输入量 Δm 引入的标准不确定度 $u(\Delta m)$

$$\Delta m = m_1 - m_0$$

C.4.1.1 m_0 引入的标准不确定度 $u(m_0)$

C.4.1.1.1 测量重复性引入的标准不确定度 $u_A(m_0)$

用电子天平称量酶标板的初始质量,重复测量 10 次,测量结果如下: 47.18010g、47.18025g、47.17986g、47.17966g、47.17981g、47.17972g、47.17966g、47.17963g、47.17977g、47.17969g。

$$\overline{m_0} = \frac{1}{10} \sum_{i=1}^{10} m_i = 47.179815 \,\mathrm{g}$$

$$u_{\rm A}(m_0) = s(m_0) = \sqrt{\frac{\sum_{i=1}^{10} \left(m_i - \overline{m_0}\right)^2}{10 - 1}} = 0.2058 \text{ mg}$$

C.4.1.1.2 电子天平称量过程中引入的不确定度 $u_{\rm B}(m_0)$

该电子天平在 $20 < m \le 230$ g 量程范围时,最大允许误差为 ± 0.15 mg,考虑均匀分布,包含因子 $k = \sqrt{3}$,则由电子天平引入的标准不确定度 $u_{\rm B}(m_{\rm 0})$ 为:

$$u_{\rm B}(m_0) = \frac{\Delta}{k} = \frac{0.15}{\sqrt{3}} = 0.0866$$
 mg

C.4.1.1.3 m_0 引入的标准不确定度 $u(m_0)$

$$u(m_0) = \sqrt{u^2_{\rm A}(m_0) + u^2_{\rm B}(m_0)} = 0.2233$$
 mg

C.4.1.2 m_1 引入的标准不确定度 $u(m_1)$

C.4.1.2.1 测量重复性引入的标准不确定度 $u_{\text{A}}(m_{\text{I}})$

使用纯水作为清洗液,将酶标板放到洗板机上进行清洗,清洗完毕后,再次称量酶标板的质量。重复洗板 10次,并记录每次清洗后酶标板质量,测得数据如下: 47.30102g、47.29833g、47.29164g、47.29864g、47.28897g、47.29761g、47.30131g、47.29897g、47.30509g、47.28999g。

$$\overline{m_1} = \frac{1}{10} \sum_{i=1}^{10} m_i = 47.297157g$$

$$u_{\rm A}(m_1) = s(m_1) = \sqrt{\frac{\sum_{i=1}^{10} \left(m_i - \overline{m_1}\right)^2}{10 - 1}} = 5.281 \,\text{mg}$$

C.4.1.2.2 电子天平称量过程中引入的不确定度 $u_{\rm R}(m_{\rm I})$

该电子天平在 $20 < m \le 230$ g 量程范围时,最大允许误差为 ± 0.15 mg,考虑均匀分布,包含因子 $k = \sqrt{3}$,则由电子天平引入的标准不确定度 $u_{\rm R}(m_{\rm l})$ 为:

$$u_{\rm B}(m_1) = \frac{\Delta}{k} = \frac{0.15}{\sqrt{3}} = 0.0866 \text{ mg}$$

C.4.1.2.3 m_1 引入的标准不确定度 $u(m_1)$

$$u(m_1) = \sqrt{u^2_{\rm A}(m_1) + u^2_{\rm B}(m_1)} = 5.2817 \text{ mg}$$

C.4.1.3 合成标准不确定度 $u(\Delta m)$

 m_0 与 m_1 正强相关,相关系数为 1, Δm 的合成标准不确定度为

$$u(\Delta m) = u(m_0) + u(m_1) = 5.5050 \text{ mg}$$

C.4.2 纯水密度引入的标准不确定度分量

温度计最大允许误差是 ± 1.5 °C,由附录 D 查得 20.0°C纯水密度值,区间半宽取 0.000322mg/ μ L,考虑均匀分布,包含因子 $k = \sqrt{3}$,则由纯水密度引入的标准不确定度为:

$$u(\rho_w) = \frac{\Delta}{k} = 1.86 \times 10^{-4} \text{ mg/}\mu\text{L}$$

C.5 合成标准不确定度

标准不确定度汇总表见表 C.1。

表 C. 1 标准不确定度分量汇总表

		标准不确定度值	灵敏系数	标准不确定度分量的值
标准不确定度符号	不确定度来源	$u(x_i)$	C_i	$ c_i u(x_i)$
$u(\Delta m)$	∆m 引入	5.5050 mg	0.0104 μL/mg	0.0572 μL
$u(\rho_w)$	纯水密度引入	0.000186 mg/μL	-1.2267 μL ² /mg	2.28×10 ⁻⁴ μL

以上各输入量无关,故医用洗板机平均残液量测量结果合成标准不确定度 uc(V)为:

$$u_{c}(V) = \sqrt{c_{1}^{2}u^{2}(\Delta m) + c_{2}^{2}u^{2}(\rho_{w})} = 0.057 \,\mu\text{L}$$

C.6 扩展不确定度

取包含因子 k=2,则测量结果的扩展不确定度为:

$$U = ku_{\rm c}(V) = 0.12 \ \mu {
m L}$$

附录 D

(0~40)℃纯水密度表(不含空气)

 kg/m^3

t ₉₀ /℃	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	999.843	9.850	9.856	9.862	9.869	9.874	9.880	9.886	9.891	9.897
1	999.902	9.907	9.911	9.916	9.920	9.924	9.928	9.932	9.936	9.940
2	999.943	9.946	9.949	9.952	9.955	9.957	9.959	9.962	9.964	9.965
3	999.967	9.969	9.970	9.971	9.972	9.973	9.974	9.974	9.975	9.975
4	999.975	9.975	9.975	9.974	9.974	9.973	9.972	9.971	9.970	9.968
5	999.967	9.965	9.963	9.961	9.959	9.957	9.954	9.952	9.949	9.946
6	999.943	9.940	9.937	9.933	9.929	9.926	9.922	9.918	9.913	9.909
7	999.904	9.900	9.895	9.890	9.885	9.880	9.874	9.869	9.863	9.857
8	999.851	9.845	9.839	9.833	9.826	9.819	9.813	9.806	9.798	9.791
9	999.784	9.776	9.769	9.761	9.753	9.745	9.737	9.728	9.720	9.711
10	999.703	9.694	9.685	9.676	9.666	9.657	9.648	9.638	9.628	9.618
11	999.608	9.598	9.588	9.577	9.567	9.556	9.545	9.534	9.523	9.512
12	999.500	9.489	9.477	9.466	9.454	9.442	9.430	9.418	9.405	9.393
13	999.380	9.367	9.355	9.342	9.329	9.315	9.302	9.289	9.275	9.261
14	999.247	9.233	9.219	9.205	9.191	9.176	9.162	9.147	9.132	9.118
15	999.103	9.087	9.072	9.057	9.041	9.026	9.010	8.994	8.978	8.962
16	998.946	8.930	8.913	8.897	8.880	8.863	8.846	8.829	8.812	8.795
17	998.778	8.760	8.743	8.725	8.707	8.689	8.671	8.653	8.635	8.617
18	998.598	8.580	8.561	8.542	8.523	8.505	8.485	8.466	8.447	8.427
19	998.408	8.388	8.369	8.349	8.329	8.309	8.288	8.268	8.248	8.227
20	998.207	8.186	8.165	8.144	8.123	8.102	8.081	8.060	8.038	8.017
21	997.995	7.973	7.951	7.929	7.907	7.885	7.863	7.841	7.818	7.796
22	997.773	7.750	7.727	7.704	7.681	7.658	7.635	7.612	7.588	7.564
23	997.541	7.517	7.493	7.469	7.445	7.421	7.397	7.372	7.348	7.323
24	997.299	7.274	7.249	7.224	7.199	7.174	7.149	7.124	7.098	7.073
25	997.047	7.021	6.996	6.970	6.944	6.918	6.891	6.865	6.839	6.812
26	996.786	6.759	6.732	6.706	6.679	6.652	6.624	6.597	6.570	6.543

表 (续)

kg/m³

t ₉₀ /℃	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
27	996.515	6.488	6.460	6.432	6.404	6.376	6.348	6.320	6.292	6.264
28	996.235	6.207	6.178	6.150	6.121	6.092	6.063	6.034	6.005	5.976
29	995.946	5.917	5.888	5.858	5.828	5.799	5.769	5.739	5.709	5.679
30	995.649	5.619	5.588	5.558	5.527	5.497	5.466	5.435	5.404	5.373
31	995.342	5.311	5.280	5.249	5.217	5.186	5.154	5.123	5.091	5.059
32	995.027	4.996	4.963	4.931	4.899	4.867	4.834	4.802	4.769	4.737
33	994.704	4.671	4.638	4.605	4.572	4.539	4.506	4.473	4.439	4.406
34	994.372	4.339	4.305	4.271	4.237	4.204	4.170	4.135	4.101	4.067
35	994.033	3.998	3.964	3.929	3.894	3.860	3.825	3.790	3.755	3.720
36	993.685	3.650	3.614	3.579	3.543	3.508	3.472	3.437	3.401	3.365
37	993.329	3.293	3.257	3.221	3.184	3.148	3.112	3.075	3.039	3.002
38	992.965	2.929	2.892	2.855	2.818	2.781	2.744	2.706	2.669	2.632
39	992.594	2.557	2.519	2.481	2.443	2.406	2.368	2.330	2.292	2.253
40	992.215	_	_	_	_	_	_	_	_	_

注:

- 1 t₉₀ 为 1990年国际温标(ITS-90)。
- 2 水密度值采用 CIPM 2001 推荐计算公式计算。